- 无标题文档
查看论文信息

论文题名(中文):

 不同类型大豆抗旱性根系特征及其分子标记的遗传多样性

作者:

 王敏

论文语种:

 chi

学科名称:

 作物遗传育种

学位:

 农学硕士

学校:

 山西农业大学

院系:

 农学院

专业:

 作物遗传育种学

研究方向:

 作物抗性遗传育种

第一导师姓名:

 杜维俊

论文完成日期:

 2007-06-01

论文题名(外文):

 Genetic diversity of wild and cultivated soybean in drought-resistance of root character and molecular markers

关键词(中文):

 栽培大豆 地方品种 野生大豆 抗旱性 根系特征 遗传多样性

关键词(外文):

 cultivars landraces wild soybeans drought resistance root character genetic diversity

论文文摘(中文):

本研究以栽培大豆、野生大豆和地方品种40份材料为研究对象,利用NTSYSEXCELDPS等软件,用隶属函数、相关分析、聚类分析等方法,从抗旱性根系特征、分子标记方面,对其进行了遗传多样性研究和抗旱性评价,以期为进一步开发、利用我国得天独厚的野生大豆资源,发现抗旱种质,拓宽现有品种的遗传基础提供理论依据。结论如下:

1苗期栽培品种和地方品种变异系数较大。干旱条件下,栽培大豆的大多数根系性状多样性指数有所下降,而野生大豆中有所增加;开花期栽培品种在根系性状上变异系数较小,而地方品种和野生大豆变异系数都显著增大,野生大豆多样性指数在干旱条件下比正常供水条件下有所增加,且在干旱条件下较栽培品种和地方品种大;结荚期地方品种和栽培品种根系性状的变异系数较小,而野生大豆变异系数较大,且野生大豆的多样性指数较栽培大豆和地方品种高

2不同类型大豆材料抗旱性表现各异。地方品种抗旱类型最为丰富,包括高抗型到干旱敏感型之间的各种类型;野生大豆中间型居多;栽培品种没有一定的规律。野生大豆在水分胁迫下根系活力比栽培大豆和地方品种相对较高。

3从根系与地上部的关系看,地上鲜重和地上干重是判断根系是否发达的主要指标。从根系与相对质膜透性的关系看,相对质膜透性越小,二级侧根数越多、植株越重。

4利用40SSR引物对40份材料进行PCR扩增,所有引物都具有多态性。40个位点共检测出262个等位基因变异,平均每个位点检测到的等位基因变异数为6.55个,变化范围为4-8个。野生大豆的平均等位变异数显著高于栽培品种和地方品种。Shannon-Weaver多样性指数最高值为2.0454,最低值为1.1528,平均值为1.6917。多态信息含量最高值为0.8500,最低值为0.5850,平均值为0.7800。野生大豆的平均Shannon-Weaver多样性指数和多态信息含量高于栽培品种和地方品种。各品种间遗传相似系数的范围为0.70-0.89,平均为0.75。野生大豆的遗传相似系数(0.7543)小于栽培大豆(0.7794)和地方品种(0.7918),在栽培大豆与地方品种间为0.7525,栽培大豆与野生大豆间为0.7436,地方品种与野生大豆间为0.7453,表明栽培大豆与野生大豆间的遗传差异最大。

5利用50RAPD随机引物对40份材料的DNA进行扩增,筛选出具有多态性且扩增条带清晰的引物38个。对这38个引物扩增结果进行统计,共检测出407条带,其中多态谱带309条,多态性程度为75.92%。每个引物可扩增出2-14条多态性带,平均产生多态性谱带8.1条。多态片段在野生大豆的多态比例(94.35%)高于栽培品种(87.47%)和地方品种(83.54%)40份材料的多样性指数最高值为4.2133最低值为0.5865,平均值为2.3380。其中,野生大豆多样性指数(2.2336高于育成品种(1.7331和地方品种(1.6198。各材料间遗传相似系数变幅范围为0.44-0.92,平均为0.75。野生大豆遗传相似系数(0.6498)<地方品种(0.7015)<栽培大豆(0.7177),在栽培大豆与地方品种间为0.6599,栽培大豆与野生大豆间为0.6487,地方品种与野生大豆间为0.6045,表明野生大豆与其他类型大豆间的遗传差异较大。

6 SSR标记和RAPD标记进行聚类分析,都分为六类:栽培品种聚为一类,地方品种聚为一类,野生种聚为四类。

以上结果表明,野生大豆变异幅度大,遗传基础广,存在抗旱基因,从而为选育抗旱性强的大豆新品种提供遗传资源。

文摘(外文):

In this study, 40 soybeans including cultivars, wild soybeans and landraces were selected as test materials. With NTSYSEXCEL and DPS software, genetic diversity of test materials in drought resistance of root character and molecular markers were analyzed through the method of value of subordinate function, the correlation analysis, and cluster. We probed into the drought resistance and genetic diversity in 40 soybeans. It provided the theory basis for discovering the germplasm of drought resistance and broadening the genetic basis of existing germplasm. The results are as follows.

Landraces and cultivars had a higher variety in seedling stage. The diversity index in most of root characters in cultivars descended, and that in wild soybeans increased. The variation of root characters in cultivars had less than that in landraces and wild soybeans in flowering stage. The diversity index in wild soybeans was more in the drought than in the water, and more than cultivars and landrace. In podding stage landrace and cultivars had less variety than wild soybeans. In different water conditions the diversity index in soybeans had less variety, but it in wild soybeans had more variety than cultivars and landrace.  

2 The same soybean had different drought resistance in different period. Landrace had abundant type, ranging from high drought resistance to high drought sensitivity. Wild soybeans had more middle drought resistance. Cultivars had not assured type. The activity of root of wild soybeans was higher than cultivars and landraces.

3The relationship of root and shoot showed that fresh shoot weight and dry shoot weight were the important index of judging flourishing extent of root. The relationship of root and relative membrane osmosis showed that the smaller in relative membrane osmosis, the more in number of secondary lateral roots.

4 40 SSR primers had polymorphism by PCR detecting. 262 alleles were identified, with 4-8 alleles per primer and averaged 6.55. The average allele in wild soybeans was higher than it in cultivars and landrace. Shannon-Weaver indices changed from 1.1528 to 2.0454 and averaged 1.6917. The average polymorphic information content (PIC) was 0.7800 and changed from 0.8500 to 0.5850. The average Shannon-Weaver indices and the average PIC in wild soybeans were higher than in cultivars and landrace. Genetic similarity ranged from 0.70 to 0.89, with a mean of 0.75. Genetic similarity in wild soybeans (0.7543) was less than cultivars (0.7794) and landrace (0.7918). It between cultivars and landrace was 0.7525, it between cultivars and wild soybeans was 0.7436, and it between landrace and wild soybeans was 0.7453. It showed that cultivars and wild soybeans had more genetic difference.   

5Out of 50 RAPD primers, 38 primers were selected to generate polymorphic DNA fragment. Total 407 alleles were identified, 309 of which were polymorphic. The ratio of polymorphism was 75.9%, with 2-14 alleles per primer and averaged 8.1. Ratio of polymorphic bands in wild soybeans (94.35%) was higher than cultivars (87.47%) and landrace (83.54%). Shannon-Weaver indices changed from 0.5865 to 4.2133 and averaged 2.3380. The average Shannon-Weaver index in wild soybeans (2.2336) was higher than in cultivars (1.7331) and landrace (1.6198). Genetic similarity ranged from 0.44 to 0.92, with a mean of 0.75. Genetic similarity in wild soybeans (0.6498)landrace0.7015)<cultivars0.7177.It between cultivars and landrace was 0.6599, it between cultivars and wild soybeans was 0.6498, and it between landrace and wild soybeans was 0.7015. It showed that wild soybeans compared with others had more genetic difference.   

6The cluster result in SSR and RAPD showed that 40 soybeans could be divided into six groups: cultivars and landraces were respectively divided into 2 different genus and wild soybeans were divided into 4 different genus.

The results above indicated that wild soybeans with broad genetic background varied greatly and had gene of drought resistance. Consequently, it can provide the germplasm to select the soybean varieties with drought resistance.

论文目录:


... 1


... 3


1大豆抗旱育种存在的主要问题... 3


2 大豆遗传多样性的研究概述... 4


3 大豆根系的遗传多样性研究... 5


3.1大豆根系的类型、形态特征及生长动态... 5


3.2根系与地上部分的关系... 7


3.3根系与植株抗旱性的关系... 8


4分子生物学的遗传多样性研究... 9


4.1主要技术... 9


4.2各技术应用范围... 12


4.3 SSR标记的大豆遗传多样性研究... 13


4.4RAPD标记的大豆遗传多样性研究... 14


5本研究的目的和意义... 16


1材料与方法... 17


1.1材料... 17


1.1.1供试材料... 17


1.1.2主要试剂... 17


1.1.3主要仪器... 17


1.2田间试验设计... 18


1.3测定项目与方法... 18


1.3.1根系形态性状的测定... 18


1.3.2根系生理性状的测定... 18


1.3.3相对质膜透性的测定... 18


1.3.4分子标记技术... 18


1.4统计分析方法... 20








 

2结果与分析... 21


2.1旱胁迫不同类型大豆的根系特征及其抗旱性评价... 21


2.1.1苗期旱胁迫根系的形态特征及其抗旱性评价... 21


2.1.2开花期根系形态特征及其抗旱性评价... 23


2.1.3结荚期根系形态性状及其抗旱性评价... 26


2.1.4不同类型大豆抗旱性综合评价... 28


2.1.5根系生理性状分析... 29


2.1.6根系与地上部分的关系... 30


2.1.7根系与叶片细胞膜透性的关系... 32


2.1.8不同类型大豆苗期根系性状抗旱系数及隶属函数聚类图... 33


2.2分子标记技术遗传多样性... 34


2.2.1SSR标记的遗传多样性... 34


2.2.2RAPD标记的遗传多样性... 40


2.2.3SSR标记与RAPD标记之间的相互关系... 46


3讨论... 47


3.1根系性状互补对评价结果的影响... 47


3.2利用根系特征评价大豆抗旱种质资源的局限性... 47


3.3各性状抗旱系数与隶属函数在抗旱性评价中的价值... 47


3.4不同生育时期大豆抗旱性差异的探讨... 48


3.5SSR标记和RAPD标记的比较... 48


3.6采用与抗旱相关的根系性状和分子标记划分不同类型大豆的比较... 48


4结论... 49


参考文献... 51


Abstract 54


附表... 56








 

致谢…………………………………………………………………………………………57


开放日期:

 2007-06-01

无标题文档